A SURVEY OF INCREMENTAL REASONING ALGORITHMS FOR DATALOG VARIANTS

Boris Motik

University of Oxford

December 8, 2016
TABLE OF CONTENTS

1 Incremental Reasoning in Datalog

2 Counting-Based Algorithms

3 The Delete/Rederive (DRed) Algorithm

4 The Forward/Backward/Forward (FBF) Algorithm

5 Comparing the Three Algorithms

6 Extending Datalog: Stratified Negation and Equality

7 Other Approaches: FOIESs & Truth Maintenance Systems

8 Conclusion
Table of Contents

1. Incremental Reasoning in Datalog

2. Counting-Based Algorithms

3. The Delete/Rederive (DRed) Algorithm

4. The Forward/Backward/Forward (FBF) Algorithm

5. Comparing the Three Algorithms

6. Extending Datalog: Stratified Negation and Equality

7. Other Approaches: FOIESs & Truth Maintenance Systems

8. Conclusion
Incremental Reasoning in Datalog

Datalog and its Application

- **Datalog**: a DB query language / KR formalism based on if-then rules

Example Datalog Program

\[
\text{hasParent}(x, y) \leftarrow \text{hasMother}(x, y) \\
\text{hasAunt}(x, z) \leftarrow \text{hasParent}(x, y) \land \text{hasSister}(x, y)
\]

- **Applications of datalog**:
 - **Semantic Web reasoning**
 - RDFS and OWL 2 RL inference rules can be encoded into datalog
 - Supported in graphDB, Systap Big Data, Oracle DB, MarkLogic, RDFox, . . .
 - **Data integration**
 - Datalog rules (possibly with function symbols) can express source mappings
 - **Enterprise data management**
 - Datalog rules capture data dependencies and thus simplify maintenance
 - Supported in LogicBlox
DATALOG REASONING VIA MATERIALISATION

- Main task: compute entailments of program and a set of facts

EXAMPLE DATALOG PROGRAM

\[
\text{hasParent}(x, y) \leftarrow \text{hasMother}(x, y) \\
\text{hasAunt}(x, z) \leftarrow \text{hasParent}(x, y) \land \text{hasSister}(x, y)
\]

EXAMPLE SET OF FACTS

\[
\text{hasMother}(Peter, Paula) \\
\text{hasSister}(Paula, Ann)
\]

EXAMPLE ENTAILMENTS

\[
\text{hasParent}(Peter, Paula) \\
\text{hasAunt}(Peter, Ann)
\]

- Materialisation: apply rules, store consequences, repeat while change
- Main benefit: all consequences are precomputed during preprocessing
- Main drawback: dealing with changes in the input
Incremental Reasoning in Datalog

INCREMENTAL REASONING

Inputs:
- a set of explicit facts E
- a datalog program P
- an ‘old’ materialisation I of P on E
- a set E^- of facts to delete from E and a set E^+ of facts to add to E

Goal: compute the ‘new’ materialisation of P on $(E \setminus E^-) \cup E^+$
Inputs:
- a set of *explicit* facts E
- a datalog program P
- an ‘old’ materialisation I of P on E
- a set E^- of facts to delete from E and a set E^+ of facts to add to E

Goal: compute the ‘new’ materialisation of P on $\left(E \setminus E^- \right) \cup E^+$
- **Do this efficiently** \Rightarrow without recomputing most of I
Incremental Reasoning

- **Inputs:**
 - a set of *explicit* facts E
 - a datalog program P
 - an ‘old’ materialisation I of P on E
 - a set E^- of facts to delete from E and a set E^+ of facts to add to E

- **Goal:** compute the ‘new’ materialisation of P on $(E \setminus E^-) \cup E^+$
 - Do this efficiently \Rightarrow without recomputing most of I

- **Note:** we delete only *explicit* facts
 - Users cannot delete inferred facts
 - \Rightarrow That is a subject for *belief revision*
Key Issues

- Addition usually not a problem: just use the seminaïve algorithm
- Deleting facts with multiple derivations is a source of difficulty

Example Program

\[A(y) \leftarrow A(x) \land R(x, y) \]

Example Data & Consequences

<table>
<thead>
<tr>
<th>Explicit Data</th>
<th>Consequences</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A(a)), (R(a, c)), (R(a, d)), (A(b)), (R(b, c))</td>
<td>(A(c)), (A(d))</td>
</tr>
</tbody>
</table>

- Delete \(A(a) \)
Key Issues

- Addition usually not a problem: just use the seminaïve algorithm
- Deleting facts with multiple derivations is a source of difficulty

Example Program

\[A(y) \leftarrow A(x) \land R(x, y) \]

Example Data & Consequences

<table>
<thead>
<tr>
<th>Explicit Data</th>
<th>Consequences</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A(a), R(a, c), R(a, d), A(b), R(b, c))</td>
<td>(A(c), A(d))</td>
</tr>
</tbody>
</table>

- Delete \(A(a) \)
- \(A(c) \) ‘survives’
 - \(A(b) \) and \(R(b, c) \) still derive \(A(c) \)
Key Issues

- Addition usually not a problem: just use the seminaïve algorithm
- Deleting facts with multiple derivations is a source of difficulty

Example Program

\[A(y) \leftarrow A(x) \land R(x, y) \]

Example Data & Consequences

<table>
<thead>
<tr>
<th>Explicit Data</th>
<th>Consequences</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A(a), R(a, c), R(a, d), A(b), R(b, c))</td>
<td>(A(c), A(d))</td>
</tr>
</tbody>
</table>

- Delete \(A(a) \)
- \(A(c) \) ‘survives’
 - \(A(b) \) and \(R(b, c) \) still derive \(A(c) \)
- \(A(d) \) ‘dies’
 - There is no alternative derivation of \(A(d) \)
Rematerialisation (i.e., restarting from scratch) is a possible solution

Ideally, incremental reasoning should be faster than rematerialisation
- Unrealistic requirement: if $E^- = E$, rematerialisation requires no work
- \Rightarrow An incremental algorithm will necessarily do more work

Next best goal for worst-case performance:
- Undo precisely rule instances that do not hold any more, and apply precisely new rule instances
- \Rightarrow Still not attainable in most cases

Weak worst-case performance:
- Do not perform more work than in the ‘old’ and the ‘new’ materialisation combined

Overall goal: more efficient than rematerialisation on small E^- and E^+
Table of Contents

1. Incremental Reasoning in Datalog

2. Counting-Based Algorithms

3. The Delete/Rederive (DRed) Algorithm

4. The Forward/Backward/Forward (FBF) Algorithm

5. Comparing the Three Algorithms

6. Extending Datalog: Stratified Negation and Equality

7. Other Approaches: FOIESs & Truth Maintenance Systems

8. Conclusion
Basic Counting (Nonrecursive Variant)

Example

\[C_0(x) \leftarrow A(x) \quad C_0(x) \leftarrow B(x) \quad C_i(x) \leftarrow C_{i-1}(x) \text{ for } 1 \leq i \leq n \]

<table>
<thead>
<tr>
<th>A(a)</th>
<th>B(a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Associate with each fact a counter initialised to zero. Increment the counter after each derivation. Delete \(A(a) \): Decrease its counter. The counter of \(A(a) \) reaches zero, so propagate deletion. Delete \(B(a) \): Decrease its counter. The counter of \(B(a) \) reaches zero, so propagate deletion.

Worst-case optimal for nonrecursive rules.
Basic Counting (Nonrecursive Variant)

Example

\[
C_0(x) \leftarrow A(x) \quad C_0(x) \leftarrow B(x) \quad C_i(x) \leftarrow C_{i-1}(x) \text{ for } 1 \leq i \leq n
\]

- Associate with each fact a counter initialised to zero
- Increment the counter after each derivation
Basic Counting (Nonrecursive Variant)

Example

\[
C_0(x) \leftarrow A(x) \quad C_0(x) \leftarrow B(x) \quad C_i(x) \leftarrow C_{i-1}(x) \text{ for } 1 \leq i \leq n
\]

- Associate with each fact a counter initialised to zero
- Increment the counter after each derivation

<table>
<thead>
<tr>
<th>A(a)</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>B(a)</td>
<td>1</td>
</tr>
<tr>
<td>C_0(a)</td>
<td>2</td>
</tr>
<tr>
<td>C_1(a)</td>
<td>1</td>
</tr>
</tbody>
</table>
Basic Counting (Nonrecursive Variant)

Example

\[C_0(x) \leftarrow A(x) \quad C_0(x) \leftarrow B(x) \quad C_i(x) \leftarrow C_{i-1}(x) \text{ for } 1 \leq i \leq n \]

- Associate with each fact a counter initialised to zero
- Increment the counter after each derivation

<table>
<thead>
<tr>
<th></th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A(a))</td>
<td>1</td>
</tr>
<tr>
<td>(B(a))</td>
<td>1</td>
</tr>
<tr>
<td>(C_0(a))</td>
<td>2</td>
</tr>
<tr>
<td>(C_1(a))</td>
<td>1</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>
Basic Counting (Nonrecursive Variant)

Example

\[
C_0(x) \leftarrow A(x) \quad C_0(x) \leftarrow B(x) \quad C_i(x) \leftarrow C_{i-1}(x) \text{ for } 1 \leq i \leq n
\]

- Associate with each fact a counter initialised to zero
- Increment the counter after each derivation

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>1</th>
<th>2</th>
<th>1</th>
<th>1</th>
<th>...</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>A(a)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B(a)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_0(a)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_1(a)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_n(a)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Basic Counting (Nonrecursive Variant)

Example

\[
C_0(x) \leftarrow A(x) \quad C_0(x) \leftarrow B(x) \quad C_i(x) \leftarrow C_{i-1}(x) \text{ for } 1 \leq i \leq n
\]

- Associate with each fact a counter initialised to zero
- Increment the counter after each derivation
- Delete \(A(a) \):
 - Decrease its counter

\[
\begin{array}{|c|c|}
\hline
A(a) & 1 \\
B(a) & 1 \\
C_0(a) & 2 \\
C_1(a) & 1 \\
\ldots & \\
C_n(a) & 1 \\
\hline
\end{array}
\]
Basic Counting (Nonrecursive Variant)

Example

\[
C_0(x) \leftarrow A(x) \quad C_0(x) \leftarrow B(x) \quad C_i(x) \leftarrow C_{i-1}(x) \text{ for } 1 \leq i \leq n
\]

- Associate with each fact a counter initialised to zero
- Increment the counter after each derivation
- Delete \(A(a) \):
 - Decrease its counter
 - The counter of \(A(a) \) reaches zero, so propagate deletion

<table>
<thead>
<tr>
<th>(A(a))</th>
<th>(B(a))</th>
<th>(C_0(a))</th>
<th>(C_1(a))</th>
<th>...</th>
<th>(C_n(a))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>...</td>
<td>1</td>
</tr>
</tbody>
</table>
Basic Counting (Nonrecursive Variant)

Example

\[C_0(x) \leftarrow A(x) \quad C_0(x) \leftarrow B(x) \quad C_i(x) \leftarrow C_{i-1}(x) \text{ for } 1 \leq i \leq n \]

- Associate with each fact a counter initialised to zero
- Increment the counter after each derivation
- Delete \(A(a) \):
 - Decrease its counter
 - The counter of \(A(a) \) reaches zero, so propagate deletion

\(A(a) \)	0
\(B(a) \)	1
\(C_0(a) \)	1
\(C_1(a) \)	1
\ldots	1
\(C_n(a) \)	1
Basic Counting (Nonrecursive Variant)

Example

\[C_0(x) \leftarrow A(x) \quad C_0(x) \leftarrow B(x) \quad C_i(x) \leftarrow C_{i-1}(x) \text{ for } 1 \leq i \leq n \]

- Associate with each fact a counter initialised to zero
- Increment the counter after each derivation
- Delete \(A(a) \):
 - Decrease its counter
 - The counter of \(A(a) \) reaches zero, so propagate deletion
- Delete \(B(a) \):
 - Decrease its counter
Basic Counting (Nonrecursive Variant)

Example

\[
\begin{align*}
C_0(x) & \leftarrow A(x) \\
C_0(x) & \leftarrow B(x) \\
C_i(x) & \leftarrow C_{i-1}(x) \text{ for } 1 \leq i \leq n
\end{align*}
\]

- Associate with each fact a counter initialised to zero
- Increment the counter after each derivation
- Delete \(A(a) \):
 - Decrease its counter
 - The counter of \(A(a) \) reaches zero, so propagate deletion
- Delete \(B(a) \):
 - Decrease its counter
 - The counter of \(B(a) \) reaches zero, so propagate deletion
Basic Counting (Nonrecursive Variant)

Example

\[C_0(x) \leftarrow A(x) \quad C_0(x) \leftarrow B(x) \quad C_i(x) \leftarrow C_{i-1}(x) \text{ for } 1 \leq i \leq n \]

- Associate with each fact a counter initialised to zero
- Increment the counter after each derivation
- Delete \(A(a) \):
 - Decrease its counter
 - The counter of \(A(a) \) reaches zero, so propagate deletion
- Delete \(B(a) \):
 - Decrease its counter
 - The counter of \(B(a) \) reaches zero, so propagate deletion
Basic Counting (Nonrecursive Variant)

Example

<table>
<thead>
<tr>
<th></th>
<th>(A(a))</th>
<th>(B(a))</th>
<th>(C_0(a))</th>
<th>(C_1(a))</th>
<th>...</th>
<th>(C_n(a))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C_0(x)) ← (A(x))</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>(C_0(x)) ← (B(x))</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(C_i(x)) ← (C_{i-1}(x)) for (1 \leq i \leq n)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Associate with each fact a counter initialised to zero
- Increment the counter after each derivation
- Delete \(A(a) \):
 - Decrease its counter
 - The counter of \(A(a) \) reaches zero, so propagate deletion
- Delete \(B(a) \):
 - Decrease its counter
 - The counter of \(B(a) \) reaches zero, so propagate deletion

Worst-case optimal for nonrecursive rules

- **Boris Motik**

A Survey of Incremental Reasoning 6/20
Basic Counting (Nonrecursive Variant)

A(a)	0
B(a)	0
C_0(a)	0
C_1(a)	0
...	
C_n(a)	0

- Associate with each fact a counter initialised to zero
- Increment the counter after each derivation
- Delete $A(a)$:
 - Decrease its counter
 - The counter of $A(a)$ reaches zero, so propagate deletion
- Delete $B(a)$:
 - Decrease its counter
 - The counter of $B(a)$ reaches zero, so propagate deletion

$$C_0(x) \leftarrow A(x) \quad C_0(x) \leftarrow B(x) \quad C_i(x) \leftarrow C_{i-1}(x) \text{ for } 1 \leq i \leq n$$
Basic Counting (Nonrecursive Variant)

Example

\[
C_0(x) \leftarrow A(x) \quad C_0(x) \leftarrow B(x) \quad C_i(x) \leftarrow C_{i-1}(x) \text{ for } 1 \leq i \leq n
\]

- Associate with each fact a counter initialised to zero
- Increment the counter after each derivation
- Delete \(A(a) \):
 - Decrease its counter
 - The counter of \(A(a) \) reaches zero, so propagate deletion
- Delete \(B(a) \):
 - Decrease its counter
 - The counter of \(B(a) \) reaches zero, so propagate deletion
- **Worst-case optimal** for nonrecursive rules
PROBLEMS OF COUNTING AND RECURSION

Example

\[
B(x) \leftarrow A(x), \quad A(x) \leftarrow B(x)
\]

| \(A(a)\) | 1 |
| \(B(a)\) | 1 |
PROBLEMS OF COUNTING AND RECURSION

Example

\[B(x) \leftarrow A(x), \quad A(x) \leftarrow B(x) \]

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(A(a))</td>
<td>1</td>
</tr>
<tr>
<td>(B(a))</td>
<td>2</td>
</tr>
</tbody>
</table>
Problems of Counting and Recursion

Example

\[B(x) \leftarrow A(x), \quad A(x) \leftarrow B(x) \]

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A(a)</td>
<td>2</td>
</tr>
<tr>
<td>B(a)</td>
<td>2</td>
</tr>
</tbody>
</table>
PROBLEMS OF COUNTING AND RECURSION

Example

\[B(x) \leftarrow A(x), \quad A(x) \leftarrow B(x) \]

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(A(a))</td>
<td>2</td>
</tr>
<tr>
<td>(B(a))</td>
<td>2</td>
</tr>
</tbody>
</table>
PROBLEMS OF COUNTING AND RECURSION

EXAMPLE

\[B(x) \leftarrow A(x), \quad A(x) \leftarrow B(x) \]

<table>
<thead>
<tr>
<th></th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>A(a)</td>
<td></td>
</tr>
<tr>
<td>B(a)</td>
<td>2</td>
</tr>
</tbody>
</table>
PROBLEMS OF COUNTING AND RECURSION

Example

\[\begin{align*}
B(x) & \leftarrow A(x), \quad A(x) \leftarrow B(x) \\
A(a) & \quad 1 \\
B(a) & \quad 2
\end{align*} \]
Problems of Counting and Recursion

Example

$$B(x) \leftarrow A(x), \quad A(x) \leftarrow B(x)$$

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$A(a)$</td>
<td>1</td>
</tr>
<tr>
<td>$B(a)$</td>
<td>1</td>
</tr>
</tbody>
</table>
PROBLEMS OF COUNTING AND RECURSION

EXAMPLE

\[B(x) \leftarrow A(x), \quad A(x) \leftarrow B(x) \]

<table>
<thead>
<tr>
<th>(A(a))</th>
<th>(B(a))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

- Cyclic dependencies cause problems
- Similar to why garbage collection by reference counting does not
Counting-Based Algorithms

COUNTING AND RECURRENCE

Example

\[
\begin{align*}
C_0(x) & \leftarrow A(x) \\
C_0(x) & \leftarrow B(x) \\
C_i(x) & \leftarrow C_{i-1}(x) \quad \text{for } 1 \leq i \leq n \\
C_0(x) & \leftarrow C_n(x)
\end{align*}
\]

| \(A(a)\) | 1 |
| \(B(a)\) | 1 |
Counting-Based Algorithms

Counting and Recursion

Example

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$A(a)$</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>$B(a)$</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>$C_0(a)$</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

- Associate with each fact an array of counters, one per iteration

$$C_0(x) \leftarrow A(x) \quad C_0(x) \leftarrow B(x) \quad C_i(x) \leftarrow C_{i-1}(x) \text{ for } 1 \leq i \leq n \quad C_0(x) \leftarrow C_n(x)$$
Counting-Based Algorithms

Counting and Recursion

Example

<table>
<thead>
<tr>
<th></th>
<th>$C_0(x)$</th>
<th>$C_0(x)$</th>
<th>$C_i(x)$</th>
<th>$C_0(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A(a)$</td>
<td>$C(x)$</td>
<td>$B(x)$</td>
<td>$C(x)$</td>
<td>$C_0(x)$</td>
</tr>
<tr>
<td>$B(a)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$C_0(a)$</td>
<td>1</td>
<td>1</td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

- Associate with each fact an array of counters, one per iteration.
Counting and Recursion

Example

<table>
<thead>
<tr>
<th></th>
<th>$C_0(x)$ ← $A(x)$</th>
<th>$C_0(x)$ ← $B(x)$</th>
<th>$C_i(x)$ ← $C_{i-1}(x)$ for $1 \leq i \leq n$</th>
<th>$C_0(x)$ ← $C_n(x)$</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th></th>
<th>$A(a)$</th>
<th>$B(a)$</th>
<th>$C_0(a)$</th>
<th>$C_1(a)$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

- Associate with each fact an array of counters, one per iteration
Example

$A(a)$	1
$B(a)$	1
$C_0(a)$	2
$C_1(a)$	1
...	

- Associate with each fact an array of counters, one per iteration
Counting-Based Algorithms

Counting and Recursion

Example

- $C_0(x) \leftarrow A(x)$
- $C_0(x) \leftarrow B(x)$
- $C_i(x) \leftarrow C_{i-1}(x)$ for $1 \leq i \leq n$
- $C_0(x) \leftarrow C_n(x)$

<table>
<thead>
<tr>
<th>$A(a)$</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B(a)$</td>
<td>1</td>
</tr>
<tr>
<td>$C_0(a)$</td>
<td>2</td>
</tr>
<tr>
<td>$C_1(a)$</td>
<td>1</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>$C_n(a)$</td>
<td>1</td>
</tr>
</tbody>
</table>

- Associate with each fact an array of counters, one per iteration
Counting-Based Algorithms

Counting and Recursion

Example

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$A(a)$</td>
<td>1</td>
<td>$C_0(a)$</td>
<td>2</td>
</tr>
<tr>
<td>$B(a)$</td>
<td>1</td>
<td>$C_1(a)$</td>
<td>1</td>
</tr>
<tr>
<td>$C_n(a)$</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Associate with each fact an array of counters, one per iteration

$C_0(x) \leftarrow A(x)$
$C_0(x) \leftarrow B(x)$
$C_i(x) \leftarrow C_{i-1}(x)$ for $1 \leq i \leq n$
$C_0(x) \leftarrow C_n(x)$
Counting and Recursion

Example

\[C_0(x) \leftarrow A(x) \quad C_0(x) \leftarrow B(x) \quad C_i(x) \leftarrow C_{i-1}(x) \text{ for } 1 \leq i \leq n \quad C_0(x) \leftarrow C_n(x) \]

\(A(a) \)	0
\(B(a) \)	0
\(C_0(a) \)	2 1
\(C_1(a) \)	1
\ldots \	
\(C_n(a) \)	1

- Associate with each fact an array of counters, one per iteration
- Delete \(A(a) \) and \(B(a) \) by undoing derivations
COUNTING AND RECURSION

Example

<table>
<thead>
<tr>
<th></th>
<th>$C_0(x)$ $\leftarrow A(x)$</th>
<th>$C_0(x)$ $\leftarrow B(x)$</th>
<th>$C_i(x)$ $\leftarrow C_{i-1}(x)$ for $1 \leq i \leq n$</th>
<th>$C_0(x)$ $\leftarrow C_n(x)$</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th></th>
<th>$A(a)$</th>
<th>$B(a)$</th>
<th>$C_0(a)$</th>
<th>$C_1(a)$</th>
<th>\ldots</th>
<th>$C_n(a)$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

- Associate with each fact an array of counters, one per iteration
- Delete $A(a)$ and $B(a)$ by undoing derivations
Example

<table>
<thead>
<tr>
<th>$A(a)$</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B(a)$</td>
<td>0</td>
</tr>
<tr>
<td>$C_0(a)$</td>
<td>0</td>
</tr>
<tr>
<td>$C_1(a)$</td>
<td>0</td>
</tr>
<tr>
<td>\ldots</td>
<td></td>
</tr>
<tr>
<td>$C_n(a)$</td>
<td>1</td>
</tr>
</tbody>
</table>

- Associate with each fact an array of counters, one per iteration
- Delete $A(a)$ and $B(a)$ by undoing derivations
COUNTING AND RECURSION

EXAMPLE

<table>
<thead>
<tr>
<th></th>
<th>$A(a)$</th>
<th>$B(a)$</th>
<th>$C_0(a)$</th>
<th>$C_1(a)$</th>
<th>$C_n(a)$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

- Associate with each fact an array of counters, one per iteration
- Delete $A(a)$ and $B(a)$ by undoing derivations
Counting-Based Algorithms

Counting and Recursion

Example

\[
\begin{align*}
C_0(x) & \leftarrow A(x) \\
C_0(x) & \leftarrow B(x) \\
C_i(x) & \leftarrow C_{i-1}(x) \text{ for } 1 \leq i \leq n \\
C_0(x) & \leftarrow C_n(x)
\end{align*}
\]

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(A(a))</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(B(a))</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(C_0(a))</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>(C_1(a))</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(C_n(a))</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Associate with each fact an array of counters, one per iteration
- Delete \(A(a)\) and \(B(a)\) by undoing derivations
Table of Contents

1 Incremental Reasoning in Datalog
2 Counting-Based Algorithms
3 The Delete/Rederive (DRed) Algorithm
4 The Forward/Backward/Forward (FBF) Algorithm
5 Comparing the Three Algorithms
6 Extending Datalog: Stratified Negation and Equality
7 Other Approaches: FOIESs & Truth Maintenance Systems
8 Conclusion
Example

\[
\begin{align*}
C_0(x) &\leftarrow A(x) \\
C_0(x) &\leftarrow B(x) \\
C_i(x) &\leftarrow C_{i-1}(x) \text{ for } 1 \leq i \leq n \\
C_0(x) &\leftarrow C_n(x)
\end{align*}
\]

Materialise initial facts
Delete \(A(a) \) using DRed:

1. Delete all facts with a derivation from \(A(a) \)
2. Rederive facts that have an alternative derivation

\[
\begin{align*}
A(a) \\
B(a)
\end{align*}
\]
Delete/Rederive (DRed) Algorithm at a Glance

Delete/Rederive (DRed): state of the art incremental maintenance algorithm

Example

| $C_0(x) \leftarrow A(x)$ | $C_0(x) \leftarrow B(x)$ | $C_i(x) \leftarrow C_{i-1}(x)$ for $1 \leq i \leq n$ | $C_0(x) \leftarrow C_n(x)$ |

- Materialise initial facts

$$
\begin{align*}
A(a) \\
B(a) \\
C_0(a) \\
C_1(a) \\
\ldots \\
C_n(a)
\end{align*}
$$
The DRed Algorithm at a Glance

Delete/Rederive (DRed): state of the art incremental maintenance algorithm

Example

\[
C_0(x) \leftarrow A(x) \quad C_0(x) \leftarrow B(x) \quad C_i(x) \leftarrow C_{i-1}(x) \text{ for } 1 \leq i \leq n \quad C_0(x) \leftarrow C_n(x)
\]

- Materialise initial facts
- Delete \(A(a) \) using DRed:

\[
\begin{array}{l}
A(a) \\
B(a) \\
C_0(a) \\
C_1(a) \\
\ldots \\
C_n(a)
\end{array}
\]
The DRed Algorithm at a Glance

Delete/Rederive (DRed): state of the art incremental maintenance algorithm

Example

| \(C_0(x) \leftarrow A(x)\) | \(C_0(x) \leftarrow B(x)\) | \(C_i(x) \leftarrow C_{i-1}(x)\) for \(1 \leq i \leq n\) | \(C_0(x) \leftarrow C_n(x)\) |

- Materialise initial facts
- Delete \(A(a)\) using DRed:
 1. Delete all facts with a derivation from \(A(a)\)

\[
\begin{align*}
A(a) \\
B(a) \\
C_0(a) \\
C_1(a) \\
\ldots \\
C_n(a)
\end{align*}
\]

\[
\begin{align*}
C_0^D(x) & \leftarrow A^D(x) \\
C_0^D(x) & \leftarrow B^D(x) \\
C_i^D(x) & \leftarrow C_{i-1}^D(x)\text{ for }1 \leq i \leq n \\
C_0^D(x) & \leftarrow C_n^D(x)
\end{align*}
\]
The DRed Algorithm at a Glance

Delete/Rederive (DRed): state of the art incremental maintenance algorithm

Example

| \(C_0(x) \leftarrow A(x) \) | \(C_0(x) \leftarrow B(x) \) | \(C_i(x) \leftarrow C_{i-1}(x) \) for \(1 \leq i \leq n \) | \(C_0(x) \leftarrow C_n(x) \) |

- Materialise initial facts
- Delete \(A(a) \) using DRed:
 1. Delete all facts with a derivation from \(A(a) \)

 \[
 \begin{align*}
 C_0^D(x) & \leftarrow A^D(x) \\
 C_0^D(x) & \leftarrow B^D(x) \\
 C_i^D(x) & \leftarrow C_{i-1}^D(x) \text{ for } 1 \leq i \leq n \\
 C_0^D(x) & \leftarrow C_n^D(x)
 \end{align*}
 \]
 2. Rederive facts that have an alternative derivation

 \[
 \begin{align*}
 C_0(x) & \leftarrow C_0^D(x) \land A(x) \\
 C_0(x) & \leftarrow C_0^D(x) \land B(x) \\
 C_i(x) & \leftarrow C_i^D(x) \land C_{i-1}(x) \text{ for } 1 \leq i \leq n \\
 C_0(x) & \leftarrow C_0^D(x) \land C_n(x)
 \end{align*}
 \]
Table of Contents

1. Incremental Reasoning in Datalog

2. Counting-Based Algorithms

3. The Delete/Rederive (DRed) Algorithm

4. The Forward/Backward/Forward (FBF) Algorithm

5. Comparing the Three Algorithms

6. Extending Datalog: Stratified Negation and Equality

7. Other Approaches: FOIESs & Truth Maintenance Systems

8. Conclusion
Facts often have many derivations, so many facts get deleted in the first step.

The Forward/Backward/Forward algorithm looks for alternatives immediately.

\[
\begin{align*}
A(a) \\
B(a) \\
C_0(a) \\
C_1(a) \\
\ldots \\
C_n(a)
\end{align*}
\]

Facts often have many derivations, so many facts get deleted in the first step.

The Forward/Backward/Forward algorithm looks for alternatives immediately.

Delete \(A(a) \) using FBF:

\[
\begin{align*}
A(a) & \\
B(a) & \\
C_0(a) & \\
C_1(a) & \\
\vdots & \\
C_n(a) &
\end{align*}
\]

Facts often have many derivations, so many facts get deleted in the first step.

The Forward/Backward/Forward algorithm looks for alternatives immediately.

Delete $A(a)$ using FBF:

1. Is $A(a)$ derivable in any other way?

The Forward/Backward/Forward (FBF) Algorithm

- Facts often have many derivations, so many facts get deleted in the first step
- The Forward/Backward/Forward algorithm looks for alternatives immediately

\[
\begin{array}{c|c}
A(a) & \times \\
B(a) & \quad \text{Delete } A(a) \text{ using FBF:} \\
C_0(a) & \\
C_1(a) & \\
\ldots & \\
C_n(a) & \\
\end{array}
\]

1. Is \(A(a) \) derivable in any other way?
2. No \(\Rightarrow \) delete

The Forward/Backward/Forward Algorithm

- Facts often have many derivations, so many facts get deleted in the first step.
- The Forward/Backward/Forward algorithm looks for alternatives immediately.

Delete $A(a)$ using FBF:

1. Is $A(a)$ derivable in any other way?
2. No \Rightarrow delete
3. As in DRed, identify $C_0(a)$ as derivable from $A(a)$

The Forward/Backward/Forward (FBF) Algorithm

Facts often have many derivations, so many facts get deleted in the first step.

The Forward/Backward/Forward algorithm looks for alternatives immediately.

Delete $A(a)$ using FBF:

1. Is $A(a)$ derivable in any other way?
2. No \Rightarrow delete
3. As in DRed, identify $C_0(a)$ as derivable from $A(a)$
4. Apply the rules to $C_0(a)$ ‘backwards’ \Rightarrow by $C_0(x) \leftarrow B(x)$, we get $B(a)$

The Forward/Backward/Forward (FBF) Algorithm

Facts often have many derivations, so many facts get deleted in the first step.

The Forward/Backward/Forward algorithm looks for alternatives immediately.

Delete $A(a)$ using FBF:

1. Is $A(a)$ derivable in any other way?
2. No ⇒ delete
3. As in DRed, identify $C_0(a)$ as derivable from $A(a)$
4. Apply the rules to $C_0(a)$ ‘backwards’ ⇒ by $C_0(x) ← B(x)$, we get $B(a)$
5. $B(a)$ is explicit so it is derivable

The Forward/Backward/Forward (FBF) Algorithm

Facts often have many derivations, so many facts get deleted in the first step.

The Forward/Backward/Forward algorithm looks for alternatives immediately.

Delete $A(a)$ using FBF:

1. Is $A(a)$ derivable in any other way?
2. No ⇒ delete
3. As in DRed, identify $C_0(a)$ as derivable from $A(a)$
4. Apply the rules to $C_0(a)$ ‘backwards’ ⇒ by $C_0(x) \leftarrow B(x)$, we get $B(a)$
5. $B(a)$ is explicit so it is derivable
6. So $C_0(a)$ is derivable too

The Forward/Backward/Forward (FBF) Algorithm

- Facts often have many derivations, so many facts get deleted in the first step.
- The Forward/Backward/Forward algorithm looks for alternatives immediately.

Delete $A(a)$ using FBF:

1. Is $A(a)$ derivable in any other way?
2. No \Rightarrow delete
3. As in DRed, identify $C_0(a)$ as derivable from $A(a)$
4. Apply the rules to $C_0(a)$ ‘backwards’ \Rightarrow by $C_0(x) \leftarrow B(x)$, we get $B(a)$
5. $B(a)$ is explicit so it is derivable
6. So $C_0(a)$ is derivable too
7. Stop propagation and terminate

Table of Contents

1. **Incremental Reasoning in Datalog**
2. **Counting-Based Algorithms**
3. **The Delete/Rederive (DRed) Algorithm**
4. **The Forward/Backward/Forward (FBF) Algorithm**
5. **Comparing the Three Algorithms**
6. **Extending Datalog: Stratified Negation and Equality**
7. **Other Approaches: FOIESs & Truth Maintenance Systems**
8. **Conclusion**
COMPARISON: RECURSIVE COUNTING

EXAMPLE PROGRAM + INITIAL DATA

\[A(y) \leftarrow A(x) \land R(x, y), \quad A(a_0), R(a_0, a_1), R(a_1, a_2), \ldots, R(a_{n-1}, a_n) \]

- Initial state

 \[
 \begin{array}{c|c}
 A(a_0) & 1 \\
 A(a_1) & 1 \\
 \vdots & \vdots \\
 A(a_i) & 1 \\
 A(a_{i+1}) & 1 \\
 \vdots & \vdots \\
 A(a_n) & 1 \\
 \end{array}
 \]

- After adding \(A(a_i) \)

 \[
 \begin{array}{c|c}
 A(a_0) & 1 \\
 A(a_1) & 1 \\
 \vdots & \vdots \\
 A(a_i) & 1 \\
 A(a_{i+1}) & 1 \\
 \vdots & \vdots \\
 A(a_n) & 1 \\
 \end{array}
 \]

- Even if nothing changes, we can redo initial work twice (if \(i = 2 \))
 - Not worst-case optimal

- The amount of repeated work gets smaller as \(i \) approaches \(n \)
 - \(\Rightarrow \) Intuition: long multiple inference chains can be problematical

- Can be made weakly worst-case optimal
Comparing the Three Algorithms

Comparison: DRed and FBF

Example Program + Initial Data

\[
A(y) \leftarrow A(x) \land R(x, y), \quad A(a_0), A(a_i), R(a_0, a_1), R(a_1, a_2), \ldots, R(a_{n-1}, a_n)
\]

- Update task: delete \(A(a_i)\)

- DRed deletes and then reproves \(A(a_j)\) with \(j \geq i\)
- More efficient if \(j\) is close to \(n\)
- Suitable when deletion is at the ‘end’ of inference chains
- Can be made weakly worst-case optimal

- FBF reproves \(A(a_j)\) with \(1 \leq j \leq i\)
- More efficient if \(j\) is close to 0
- Suitable when deletion is at the ‘front’ of inference chains
- Works well if facts can be reproved easily
- Not weakly worst-case optimal: ‘old’ rule instances examined once more in backward chaining
Table of Contents

1. **Incremental Reasoning in Datalog**

2. **Counting-Based Algorithms**

3. **The Delete/Rederive (DRed) Algorithm**

4. **The Forward/Backward/Forward (FBF) Algorithm**

5. **Comparing the Three Algorithms**

6. **Extending Datalog: Stratified Negation and Equality**

7. **Other Approaches: FOIESs & Truth Maintenance Systems**

8. **Conclusion**
Example Program + Initial Data

\[B(x) \leftarrow U(x) \land \neg A(x), \quad C(x) \leftarrow U(x) \land \neg B(x), \quad D(x) \leftarrow U(x) \land \neg C(x), \quad U(a) \]

- **Initial state**
 - \[B(a) \]
 - \[D(a) \]

- **After adding** \[A(a) \]
 - \[A(a) \]
 - \[C(a) \]

- Deletion and insertion are **not independent**:
 - Insertion into negated atoms is deletion and vice versa

- \[\Rightarrow \] Must apply deletion and insertion per **stratum**

- Considerable source of complexity for DRed and FBF:
 - Cannot update materialisation in the end
 - For each stratum, both ‘old’ and ‘new’ materialisation must be kept
 - Ensuring **nonrepetition** is not straightforward
Example Program + Initial Data

\[y_1 \approx y_2 \leftarrow R(x, y_1) \land R(x, y_2), \quad C(x) \leftarrow A(x) \land B(x), \quad R(c, a), R(c, b), A(a), B(b) \]

- **Materialisation**
 - \(R(c, a) \)
 - \(R(c, b) \)
 - \(a \approx b \)
 - \(A(a) \)
 - \(A(b) \)
 - \(B(a) \)
 - \(B(b) \)
 - \(C(a) \)
 - \(C(b) \)

- **Eliminate redundancy by keeping representatives only:**
 - Representative of \(a \) is \(a \)
 - Representative of \(b \) is \(a \)
 - Representative of \(c \) is \(c \)
 - \(R(c, a) \)
 - \(a \approx a \)
 - \(A(a) \)
 - \(B(a) \)
 - \(C(a) \)
Example Program + Initial Data

\[y_1 \approx y_2 \leftarrow R(x, y_1) \land R(x, y_2), \quad C(x) \leftarrow A(x) \land B(x), \quad R(c, a), R(c, b), A(a), B(b) \]

- Initial representation

 \[
 \begin{array}{l}
 R(c, a) \\
 a \approx a \\
 A(a) \\
 B(a) \\
 C(a)
 \end{array}
 \]

- Representation after deleting \(R(c, b) \)

 \[
 \begin{array}{l}
 R(c, a) \\
 A(a) \\
 B(b)
 \end{array}
 \]

- \(\Rightarrow \) Deletion may require addition — \(B(b) \) in this case

- In fact, the representation after deletion can have more facts!
Datalog with Equality (III)

DRed algorithm not very efficient due to equality replacement rules:
- \(A(x) \leftarrow A(y) \land x \approx y, \quad B(x) \leftarrow B(y) \land x \approx y, \ldots \)
- Deleting \(a \approx b \) results in deleting all facts containing \(a \) or \(b \)
- Equality rules are highly recursive — the problematical case for DRed
- \(\Rightarrow \) Often overdeletes most of the materialisation

FBF is much more efficient:
- Eager reproving particularly effective with equality
- Can efficiently handle small updates, particularly if equality does not change
Table of Contents

1. **Incremental Reasoning in Datalog**

2. **Counting-Based Algorithms**

3. **The Delete/Rederive (DRed) Algorithm**

4. **The Forward/Backward/Forward (FBF) Algorithm**

5. **Comparing the Three Algorithms**

6. **Extending Datalog: Stratified Negation and Equality**

7. **Other Approaches: FOIESs & Truth Maintenance Systems**

8. **Conclusion**
First-Order Incremental Evaluation Systems (FOIESs)

- For single-tuple changes, update the materialisation using a finite number of first-order queries
 - I.e., compute updates using SQL!

Example Program

\[R(x, z) \leftarrow R(x, y) \land R(y, z) \]
First-Order Incremental Evaluation Systems (FOIESs)

- For single-tuple changes, update the materialisation using a finite number of first-order queries
 - I.e., compute updates using SQL!

Example Program

\[
R(x, z) \leftarrow R(x, y) \land R(y, z)
\]

Add \(R_{new}(c, d) \)

![Diagram showing the update process with nodes a, b, c, d, e, f connected by relations R and R_{new}]

Boris Motik
A Survey of Incremental Reasoning
First-Order Incremental Evaluation Systems (FOIESs)

- For single-tuple changes, update the materialisation using a finite number of first-order queries
 - I.e., compute updates using SQL!

Example Program

\[R(x, z) \leftarrow R(x, y) \land R(y, z) \]

- Add \(R_{\text{new}}(c, d) \)
- Evaluate \(R(x, y) \land R_{\text{new}}(y, z) \) and add \(R(x, z) \)
First-Order Incremental Evaluation Systems (FOIESs)

- For single-tuple changes, update the materialisation using a finite number of first-order queries
- I.e., compute updates using SQL!

Example Program

\[R(x, z) \leftarrow R(x, y) \land R(y, z) \]

- Add \(R_{new}(c, d) \)
- Evaluate \(R(x, y) \land R_{new}(y, z) \) and add \(R(x, z) \)
- Evaluate \(R_{new}(x, y) \land R(y, z) \) and add \(R(x, z) \)
First-Order Incremental Evaluation Systems (FOIESs)

- For single-tuple changes, update the materialisation using a finite number of first-order queries
 - I.e., compute updates using SQL!

Example Program

\[R(x, z) \leftarrow R(x, y) \land R(y, z) \]

- Add \(R_{\text{new}}(c, d) \)
- Evaluate \(R(x, y) \land R_{\text{new}}(y, z) \) and add \(R(x, z) \)
- Evaluate \(R_{\text{new}}(x, y) \land R(y, z) \) and add \(R(x, z) \)
- Evaluate \(R(x, y) \land R_{\text{new}}(y, z) \land R(z, w) \) and add \(R(x, w) \)
CAPABILITIES OF FOIESs

- Possible only in limited situations:
 - Adding (but not deleting) tuples on chain programs
 - Deleting tuples for transitivity over *acyclic* data
 - No FOIES exists for transitivity and *cyclic* graphs

- Capabilities increase if we can maintain additional *auxiliary* relations
 - Still cannot handle transitivity over cyclic graphs for deletion

- ⇒ Neat idea, but not really suitable for general use
Truth Maintenance Systems (TMSs)

- **Justification**: a set of facts and a rule that prove some fact
 - Rule $A(x) \leftarrow B(x) \land C(x)$ and facts $B(a)$ and $C(a)$ justify $A(a)$
 - Can be seen as a rule instance $A(a) \leftarrow B(a) \land C(a)$

- Main idea: store with each fact a set of justifications
 - Add a justification each time a fact is derived
 - Delete a justification each time a rule instance goes away
 - Delete a fact when its set of justifications drops to zero

- Main problem: storing justifications incurs significant overhead
 - Particularly on highly recursive programs
 - \Rightarrow Unlikely to be efficient enough for large knowledge bases
Table of Contents

1. **Incremental Reasoning in Datalog**

2. **Counting-Based Algorithms**

3. **The Delete/Rederive (DRed) Algorithm**

4. **The Forward/Backward/Forward (FBF) Algorithm**

5. **Comparing the Three Algorithms**

6. **Extending Datalog: Stratified Negation and Equality**

7. **Other Approaches: FOIESs & TruthMaintenance Systems**

8. **Conclusion**
Three algorithms most suitable for practice:
 - Counting (with a nontrivial extension to recursion)
 - DRed
 - FBF

No algorithm is worst-case optimal
 - Can in fact be twice as inefficient as rematerialisation

Counting and DRed are optimal in a weak sense
 - They consider at most all inferences from the ‘old’ and the ‘new’ derivation

FBF is not weakly optimal due to backward chaining

Counting has a fixed overhead that shows up on small updates

FBF seems to be particularly suited to small updates