Stream Reasoning using Temporal Logic and Predictive Probabilistic State Models

Mattias Tiger Fredrik Heintz

Artificial Intelligence and Integrated Computer Systems
Department of Computer and Information Science
Linköping University, Sweden
Execution Monitoring in Robotics

Am I in a no-fly zone? - **boolean**
Is it **likely** that I am in a no-fly zone?
Is it **likely** that I am about to crash into the wall in the near future?
Execution Monitoring in Robotics

Am I in a no-fly zone? - **boolean**
Is it **likely** that I am in a no-fly zone?
Is it **likely** that I am about to crash into the wall in the near future?
Metric Temporal Logic (MTL) formulas are evaluated over the stream (infinite state sequence) using Progression.

Incremental evaluation by formula re-writing to incorporate what has been observed so far.
What do we know (about terms) at t_k?

- Observations
- Predictions (past)
- Estimates
- Predictions (future)
Truth values of predicates
Numerical values of terms
Stochastic estimates of terms (Green, solid outline)
Stochastic predictions of terms (Red, dashed outline)
An alternative view

\[S_{t_0} \quad S_{t_1} \quad S_{t_2} \]
\[S_{t_0|t_0} \quad S_{t_1|t_0} \quad S_{t_2|t_0} \]
\[S_{t_0|t_1} \quad S_{t_1|t_1} \quad S_{t_2|t_1} \]
\[S_{t_0|t_2} \quad S_{t_1|t_2} \quad S_{t_2|t_2} \]
P-MTL is MTL extended with a stochastic temporal term operator

Estimated feature: \(\bullet_{t|t} \text{Altitude}[\text{uav1}] (t \leq 0) \)

Predicted feature: \(\bullet_{t'|t} \text{Altitude}[\text{uav1}] (t \leq 0, \ t' \neq t) \)

\[\square (\text{Altitude}[\text{uav1}] - \text{Altitude}[\text{roofA}]) > 2 \]

\(\square (Pr((\bullet_{0|0} \text{Altitude}[\text{uav1}] - \bullet_{0|0} \text{Altitude}[\text{roofA}]) > 2) \geq 0.99) \)

\(\square (Pr((\bullet_{3|0} \text{Altitude}[\text{uav1}] - \bullet_{0|0} \text{Altitude}[\text{roofA}]) > 2) \geq 0.99) \)
P-MTL is MTL extended with a stochastic temporal term operator

Estimated feature: \(\bullet_{t \mid t} \text{Altitude}[\text{uav1}] \ (t \leq 0) \)

Predicted feature: \(\bullet_{t' \mid t} \text{Altitude}[\text{uav1}] \ (t \leq 0, \ t' \neq t) \)

\[\square (\text{Altitude}[\text{uav1}] - \text{Altitude}[\text{roofA}] > 2) \]

\[\square (\text{Pr}(\bullet_{0 \mid 0} \text{Altitude}[\text{uav1}] - \bullet_{0 \mid 0} \text{Altitude}[\text{roofA}] > 2) \geq 0.99) \]

\[\square (\text{Pr}(\bullet_{3 \mid 0} \text{Altitude}[\text{uav1}] - \bullet_{0 \mid 0} \text{Altitude}[\text{roofA}] > 2) \geq 0.99) \]
P-MTL is MTL extended with a stochastic temporal term operator

Estimated feature: \(\bullet_{t|t} \text{Altitude}[\text{uav1}] \ (t \leq 0) \)

Predicted feature: \(\bullet_{t'|t} \text{Altitude}[\text{uav1}] \ (t \leq 0, \ t' \neq t) \)

\[\square(\text{Altitude}[\text{uav1}] - \text{Altitude}[\text{roofA}]) > 2) \]

\[\square(Pr((\bullet_{0|0} \text{Altitude}[\text{uav1}] - \bullet_{0|0} \text{Altitude}[\text{roofA}]) > 2) \geq 0.99) \]

\[\square(Pr((\bullet_{3|0} \text{Altitude}[\text{uav1}] - \bullet_{0|0} \text{Altitude}[\text{roofA}]) > 2) \geq 0.99) \]
P-MTL is MTL extended with a stochastic temporal term operator

Estimated feature: \(\bullet_{t|t}\text{Altitude}[\text{uav1}] \ (t \leq 0) \)

Predicted feature: \(\bullet_{t'|t}\text{Altitude}[\text{uav1}] \ (t \leq 0, \ t' \neq t) \)

\(\Box (\text{Altitude}[\text{uav1}] - \text{Altitude}[\text{roofA}]) > 2) \)

\(\Box (Pr((\bullet_{0|0}\text{Altitude}[\text{uav1}] - \bullet_{0|0}\text{Altitude}[\text{roofA}]) > 2) \geq 0.99) \)

\(\Box (Pr((\bullet_{3|0}\text{Altitude}[\text{uav1}] - \bullet_{0|0}\text{Altitude}[\text{roofA}]) > 2) \geq 0.99) \)
P-MTL is MTL extended with a stochastic temporal term operator

Estimated feature: \[\bullet_{t\mid t} \text{Altitude}[\text{uav1}] \ (t \leq 0) \]

Predicted feature: \[\bullet_{t'\mid t} \text{Altitude}[\text{uav1}] \ (t \leq 0, \ t' \neq t) \]

\[\square \left(\text{Altitude}[\text{uav1}] - \text{Altitude}[\text{roofA}] \right) > 2 \]

\[\square \left(\Pr \left(\bullet_{0\mid 0} \text{Altitude}[\text{uav1}] - \bullet_{0\mid 0} \text{Altitude}[\text{roofA}] \right) > 2 \right) \geq 0.99 \]

\[\square \left(\Pr \left(\bullet_{3\mid 0} \text{Altitude}[\text{uav1}] - \bullet_{0\mid 0} \text{Altitude}[\text{roofA}] \right) > 2 \right) \geq 0.99 \]
Predicates

\[P(\tau_1, \ldots, \tau_n) \mid \neg \alpha \mid \alpha \land \beta \mid \alpha \lor \beta \mid \alpha \rightarrow \beta \mid \Box_{t_1} \alpha \mid \Box_{[t_1, t_2]} \alpha \mid \Box \alpha \mid \Diamond_{[t_1, t_2]} \alpha \mid \Diamond \alpha \]

Terms

\[\bar{f}[\text{const}] \mid \bullet_{t_1} \bar{f}[\text{const}] \mid \bullet_{t_1|t_2} \bar{f}[\text{const}] \mid \text{const} \mid f(\tau_1, \ldots, \tau_n) \mid \text{Pr}(g(\tau_p, c_1, \ldots, c_m)) \]
Grounding of P-MTL terms in computational environment

- Sensors
- Observations
- Probabilistic Reasoning
- Probabilities
- Logical Reasoner (Progression)
Grounding of P-MTL terms in computational environment

\[\mathcal{E} = \langle T, O, F, \bar{F}, X, D, P \rangle \]

Intuition

P-MTL: Stochastic temporal term operator

P-MTL: Syntax

P-MTL: Grounding

Grounding of P-MTL terms in computational environment

- Sensors
- Observation: \(\bar{f}_t \)
- Temporal Model: \(\gamma_t^X \)
- Estimator
- Estimation: \(x_t | t \)
- Predictor
- Prediction: \(x_{t'} | t \)
- Logical Reasoner (Progression)
- Truth: \(b_t \)
- Probability: \(pr_t \)

Summary

Mattias Tiger, Fredrik Heintz

Linköping University
Example: Execution Monitoring

A UAV may only move under the conditions that

- **Its perception is precise**
 - The estimate of its position to be within a 1m radius circle with 99% probability

- **Its near-time predictions are precise**
 - The prediction of its position 3 seconds from now must be within a 1m radius circle with 95% probability

- **Its near-time prediction quality is high**
 - The prediction must match with the then estimated position with at least 50% similarity.
Example: Execution Monitoring
A UAV may only move under the conditions that

- **Its perception is precise**
 - The estimate of its position to be within a 1m radius circle with 99% probability

- **Its near-time predictions are precise**
 - The prediction of its position 3 seconds from now must be within a 1m radius circle with 95% probability

- **Its near-time prediction quality is high**
 - The prediction must match with the then estimated position with at least 50% similarity.
Example: Execution Monitoring

A UAV may only move under the conditions that

- Its perception is precise
 - The estimate of its position to be within a 1m radius circle with 99% probability

- Its near-time predictions are precise
 - The prediction of its position 3 seconds from now must be within a 1m radius circle with 95% probability

- Its near-time prediction quality is high
 - The prediction must match with the then estimated position with at least 50% similarity.
• The estimate of its position to be within a 1m radius circle with 99% probability
• The prediction of its position 3 seconds from now must be within a 1m radius circle with 95% probability
• The prediction must match with the then estimated position with at least 50% similarity.

\[\square \left(\Pr(insideRelative(\bullet_0|0\text{Position}[\text{uav1}], 1\text{mCircle})) > 0.99 \right) \wedge \]
\[\Pr(insideRelative(\bullet_3|0\text{Position}[\text{uav1}], 1\text{mCircle})) > 0.95 \wedge \]
\[\circ_3 \left(similarity(\bullet_0|0\text{Position}[\text{uav1}], \bullet_0|{-3}\text{Position}[\text{uav1}]) > 0.5 \right) \]
We introduce\(^1\) **P-MTL** as an extension to MTL

Our contribution is a formal interface between existing logical reasoning and existing probabilistic reasoning methods:

- A **formal framework** with an **explicit** separation
- A selection of important temporal and probabilistic concepts from probability theory can be referred to at the logical level
- Both aspects retain strengths and computational complexities